ITVH - Fisica II
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

GLSARIO IV UNIDAD

Ir abajo

GLSARIO IV UNIDAD Empty GLSARIO IV UNIDAD

Mensaje  09300833logan Dom Jun 06, 2010 7:16 pm

Solidificación
La solidificación es un proceso físico que consiste en el cambio de estado de la materia de líquido a sólido producido por una disminución en la temperatura. Es el proceso inverso a la fusión.
En general, los compuestos disminuyen de volumen al solidificarse, aunque no sucede en todos los casos; en el caso del agua aumenta.

Calor
El calor es la transferencia de energía entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas. Este flujo siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia de calor hasta que ambos cuerpos se encuentren en térmico. El calor puede ser transferido por diferentes mecanismos, entre los que cabe reseñar la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos se encuentran presentes en mayor o menor grado.

TRABAJO
El trabajo que realiza una fuerza se define como el producto de ésta, por el camino que recorre su punto de aplicación y por el coseno del ángulo que forman la una con el otro. El trabajo es una magnitud física escalar que se representa con la letra (del inglés Work) y se expresa en unidades de energía, esto es en julios o joule (J) en el Sistema Internacional de Unidades.

Motor térmico
Un motor térmico es una máquina térmica motora, i.e. una máquina térmica de motor, o un motor de tipo térmico. En definitiva, es algo de motor y de temperatura, en la cual la energía del fluido que atraviesa la máquina disminuye, obteniéndose energía mecánica. Transforma energía térmica en trabajo mecánico por medio del aprovechamiento del gradiente de temperatura entre una fuente de calor (foco caliente) y un sumidero de calor (foco frío). El calor se transfiere de la fuente al sumidero y, durante este proceso, algo del calor se convierte en trabajo por medio del aprovechamiento de las propiedades de un fluido de trabajo, usualmente un gas o un líquido.

Sistema cerrado
Un sistema cerrado o sistema aislado es un sistema físico (o químico) que no interacciona con otros agentes físicos situados fuera de él y por tanto no está conectado "causalmente" ni correlacionalmente con nada externo a él.
Una propiedad importante de los sistemas cerrados es que las ecuaciones de evolución temporal, llamadas "ecuaciones del movimiento" de dicho sistema solo dependen de variables y factores contenidas en el sistema. Para un sistema de ese tipo por ejemplo la elección del origen de tiempos es arbitraria y por tanto las ecuaciones de evolución temporal son invariantes respecto a las traslaciones temporales. Eso último implica que la energía total de dicho sistema se conserva (ver conservación de la energía), de hecho, un sistema cerrado al estar aislado no puede intercambiar energía con nada externo a él.

Sistema abierto
Un sistema abierto es un sistema físico (o químico) que interacciona con otros agentes físicos, por lo tanto está conectado correlacionalmente con factores externos a él.
Una propiedad importante de los sistemas abiertos es que las ecuaciones de evolución temporal, llamadas "ecuaciones del movimiento" de dicho sistema no dependen de variables y factores contenidas en el sistema. Para un sistema de ese tipo por ejemplo la elección del origen de tiempos es exacta.

Ciclo de Carnot
El ciclo de Carnot es cuando una maquina trabaja absorbiendo una cantidad de calor Q1 de la fuente de alta temperatura y cede un calor Q2 a la de baja temperatura produciendo un trabajo sobre el exterior. Una máquina térmica que realiza este ciclo se denomina Carnot. Como todos los procesos que tienen lugar en el ciclo ideal son reversibles, el ciclo puede invertirse. Entonces la máquina absorbe calor de la fuente fría y cede calor a la fuente caliente, teniendo que suministrar trabajo a la máquina.

Primera ley de la termodinámica
También conocida como principio de conservación de la energía para la termodinámica — en realidad el primer principio dice más que una ley de conservación—, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna.

Segunda ley de la termodinámica
Esta ley arrebata la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.

Tercera ley de la termodinámica
La Tercera de las leyes de la termodinámica, propuesta por Walter Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.

La Ley cero
La Ley cero de la termodinámica nos dice que si tenemos dos cuerpos llamados A y B, con diferente temperatura uno de otro, y los ponemos en contacto, en un tiempo determinado t, estos alcanzarán la misma temperatura, es decir, tendrán ambos la misma temperatura. Si luego un tercer cuerpo, que llamaremos C se pone en contacto con A y B, también alcanzará la misma temperatura y, por lo tanto, A, B y C tendrán la misma temperatura mientras estén en contacto.
De este principio podemos inducir el de temperatura, la cual es una condición que cada cuerpo tiene y que el hombre ha aprendido a medir mediante sistemas arbitrarios y escalas de referencia (escalas termométricas).

Mol
El mol (símbolo: mol) es la unidad con que se mide la cantidad de sustancia, una de las siete magnitudes físicas fundamentales del Unidades. Dada cualquier sustancia (elemento químico, compuesto o material) y considerando a la vez un cierto tipo de entidades elementales que la componen, se define como un mol a la cantidad de esa sustancia que contiene tantas entidades elementales del tipo considerado, como átomos hay en 12 gramos de carbono-12. Esta definición no aclara a qué se refiere con cantidad de sustancia y su interpretación es motivo de debates, aunque normalmente se da por hecho que se refiere al número de entidades.

Electromagnetismo
El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética).El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. El electromagnetismo considerado como fuerza es una de las cuatro fuerzas fundamentales del universo actualmente conocido.

Oscilaciones
Se denomina oscilación a una variación, perturbación o fluctuación en el tiempo de un medio o sistema. Si el fenómeno se repite, se habla de oscilación periódica. Oscilación, en física, química e ingeniería, movimiento repetido de un lado a otro en torno a una posición central, o posición de equilibrio. El recorrido que consiste en ir desde una posición extrema a la otra y volver a la primera, pasando dos veces por la posición central, se denomina ciclo. El número de ciclos por segundo, o hercios (Hz), se conoce como frecuencia de la oscilación.
Una oscilación en un medio material es lo que crea el sonido. Una oscilación en una corriente eléctrica crea una onda electromagnética.

Entropía
La entropía describe lo irreversible de los sistemas termodinámicos. En termodinámica, la entropía (simbolizada como S) es la magnitud física que mide la parte de la energía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850.

ESATDOS DE AGREGACION
Cualquier sustancia o elemento material, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen. La materia se presenta en tres estados o formas de agregación: sólido, líquido y gaseoso.
• Los sólidos: Tienen forma y volumen constantes. Se caracterizan por la rigidez y regularidad de sus estructuras.
• Los líquidos: No tienen forma fija pero sí volumen. La variabilidad de forma y el presentar unas propiedades muy específicas son características de los líquidos.
• Los gases: No tienen forma ni volumen fijos. En ellos es muy característica la gran variación de volumen que experimentan al cambiar las condiciones de temperatura y presión.

Entalpía
Entalpía (del prefijo en y del griego "enthalpos" (ενθαλπος) calentar) es una magnitud termodinámica, simbolizada con la letra H, cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, o sea, la cantidad de energía que un sistema puede intercambiar con su entorno. Usualmente la entalpía se mide, dentro del Sistema Internacional de Unidades, en julios.

Energía interna
En física, la energía interna U de un sistema intenta ser un reflejo de la energía a escala microscópica. Más concretamente, es la suma de:
• la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que lo forman respecto al centro de masas del sistema, y de
• la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.
La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo.

Cero absoluto
El cero absoluto es la temperatura teórica más baja posible. A esta temperatura el nivel de energía del sistema es el más bajo posible, por lo que las partículas, según la mecánica clásica, carecen de movimiento; no obstante, según la mecánica cuántica, el cero absoluto debe tener una energía residual, llamada energía de punto cero, para poder así cumplir el principio de indeterminación de Heisenberg.El. El cero absoluto sirve de punto de partida tanto para la escala de Kelvin como para la escala de Rankine.

ISOTERMICO
Se denomina proceso isotérmico o proceso isotermo al cambio de temperatura reversible en un sistema termodinámico, siendo dicho cambio de temperatura constante en todo el sistema. La compresión o expansión de un gas ideal en contacto permanente con un termostato es un ejemplo de proceso isotermo, y puede llevarse a cabo colocando el gas en contacto térmico con otro sistema de capacidad calorífica muy grande y a la misma temperatura que el gas; este otro sistema se conoce como foco caliente. De esta manera, el calor se transfiere muy lentamente, permitiendo que el gas se expanda realizando trabajo.

ADIABÁTICO
Es aquél en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isotrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina como proceso isotérmico. El término adiabático hace referencia a elementos que impiden la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático.

VOLUMÉTRICA
En los gases succionados por un compresor, el volumen real del vapor succionado por unidad de tiempo proveniente de la tubería de succión es el desplazamiento real del compresor. La relación desplazamiento real del compresor (Va) al desplazamiento del pistón (Vp) es conocido como eficiencia volumétrica total -o real- del compresor

EXPANSIÒN
Se denomina expansión a la extensión de longitud, volumen o alguna otra dimensión métrica que sufre un cuerpo físico debido al cambio de temperatura que se provoca en ella por cualquier medio.

Energía cinética
La energía cinética de un cuerpo es una energía que surge en el fenómeno del movimiento. Está definida como el trabajo necesario para acelerar un cuerpo de una masa dada desde el reposo hasta la velocidad que posee. Una vez conseguida esta energía durante la aceleración, el cuerpo mantiene su energía cinética salvo que cambie su rapidez. Para que el cuerpo regrese a su estado de reposo se requiere un trabajo negativo de la misma magnitud que su energía cinética.

Calor específico
El calor específico es una magnitud física que se define como la cantidad de calor que hay que suministrar a la unidad de masa de una sustancia o sistema termodinámico para elevar su temperatura en una unidad (kelvin o grado Celsius). En general, el valor del calor específico depende de dicha temperatura inicial. Se la representa con la letra c (minúscula).
En forma análoga, se define la capacidad calorífica como la cantidad de calor que hay que suministrar a toda la extensión de una sustancia para elevar su temperatura en una unidad (kelvin o grado Celsius). Se la representa con la letra C (mayúscula). Por lo tanto, el calor específico es la capacidad calorífica específica.

Temperatura absoluta
La Temperatura absoluta es el valor de la temperatura medida con respecto a una escala que comienza en el cero absoluto (0 K ó −273,15 °C). Se trata de uno de los principales parámetros empleados en termodinámica y mecánica estadística. En el Sistema Internacional de
Unidades se expresa en kelvin, cuyo símbolo es K.

GAS IDEAL MONOATÓMICO
La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura. En los gases monoatómicos la energía total está prácticamente toda en forma de energía cinética de traslación.

GAS IDEAL POLIATOMICO
Si pensamos en constituyentes atómicos o moleculares, será el resultado de la suma de la energía cinética de las moléculas o átomos que constituyen el sistema (de sus energías de traslación, rotación y vibración), y de la energía potencial intermolecular (debida a las fuerzas intermoleculares).En un gas ideal poli atómico, deberemos considerar además la energía vibracional y rotacional de las mismas.

Proceso isobárico
Un proceso isobárico es un proceso termodinámico que ocurre a presión constante. En él, el calor transferido a presión constante está relacionado con el resto de variables mediante.

cheers afro lol! lol!
09300833logan
09300833logan

Mensajes : 6
Fecha de inscripción : 04/02/2010

Volver arriba Ir abajo

Volver arriba

- Temas similares

 
Permisos de este foro:
No puedes responder a temas en este foro.